The Inhibition of Hepatic and Renal Glucuronidation of p-Nitrophenol and 4-Methylumbelliferone by Oil Palm Empty Fruit Bunch Lignin and Its Main Oxidation Compounds

نویسندگان

  • Norliyana Mohamad Salleh
  • Sabariah Ismail
  • Mohamad Nasir Mohamad Ibrahim
چکیده

BACKGROUND In order to develop oil palm empty fruit bunch (EFB) lignin as a nutraceutical and health supplement, the investigation of its potential in interacting with other drugs via inhibition of drug-metabolizing enzymes (DMEs) would ensure product safety. OBJECTIVE The study was aimed to investigate the in vitro effect of oil palm EFB lignin and its main oxidation compounds on phase II DME UDP-glucuronosyltransferases (UGTs) in rat liver and kidney microsomes. MATERIALS AND METHODS The p-nitrophenol (p-NP) and 4-methylumbelliferone (4-MU) were employed as probe substrates in glucuronidation assays. The effect of soda oil palm EFB lignin on Vmax, Km, CLint, Ki, and mode of inhibition of 4-MU glucuronidation in RLM was also determined. RESULTS The inhibitory potency of oil palm EFB lignin for both p-NP and 4-MU glucuronidation in rat liver microsome (RLM) and rat kidneys microsomes (RKM) was found to be in the rank order of soda > kraft > organosolv. However, the inhibitory potency of its main oxidation compounds were in the rank order of vanillin > syringaldehyde > p-hydroxybenzaldehyde. Soda oil palm EFB lignin exhibited mixed-type inhibition against 4-MU glucuronidation in RLM, showing the change in apparent Vmax and with only a minor effect on Km compared with control. CONCLUSIONS The findings showed that effect of oil palm EFB lignin on both p-NP and 4-MU glucuronidation in RLM and RKM was enhanced by the presence of vanillin as well as flavonoids. Kinetic study showed that soda oil palm EFB lignin exhibited strong inhibition on UGT activity in RLM with mixed-type inhibition mode. SUMMARY The inhibitory potential of oil palm EFB lignin extracts for p-NP and 4-MU glucuronidation in RLM and RKM can be listed in the following rank order: soda > kraft > organosolvThe inhibitory potential of oil palm EFB lignin main oxidation compounds for p-NP and 4-MU glucuronidation in RLM and RKM can be listed in the following rank order: vanillin > syringaldehyde > p-hydroxybenzaldehydeResults suggested that the effect of oil palm EFB lignin on p-NP and 4-MU glucuronidation activity in both RLM and RKM was enhanced by the presence of vanillin as well as total flavonoid contentResults also suggested that oil palm EFB lignin may inhibit glucuronidation of substrate by UGT enzymes, especially UGT1A6, particularly in rat liver Abbreviations used:p-NP: p-Nitrophenol, 4-MU: 4-Methylumbelliferone, EFB: Empty fruit bunch, DME: Drug-metabolizing enzymes, UGT: UDPglucuronosyltransferase, Vmax: Maximal reaction velocity, Km: Michaelis-Menten constant, CLint: Intrinsic clearance, Ki: Dissociation constant of an inhibitor enzyme complex, 4-MUG: 4-Methylumbelliferone glucuronide, DMSO: Dimethyl sulfoxide, IC50: Half maximal inhibitory concentration, p-NPG: p-Nitrophenol glucuronide, RKM: Rat kidneys microsomes, RLM: Rat liver microsome, UDPGA: UDPglucuronic acid, TCA: trichloroacetic acid, MPA: mycophenolic acid.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Production of Monomeric Aromatic Compounds from Oil Palm Empty Fruit Bunch Fiber Lignin by Chemical and Enzymatic Methods.

In this study, oil palm empty fruit bunch (OPEFBF) was pretreated with alkali, and lignin was extracted for further degradation into lower molecular weight phenolic compounds using enzymes and chemical means. Efficiency of monomeric aromatic compounds production from OPEFBF lignin via chemical (nitrobenzene versus oxygen) and enzymatic [cutinase versus manganese peroxidase (MnP)] approaches was...

متن کامل

Acid Hydrolysis of Pretreated Palm Oil Lignocellulosic Wastes

Palm oil solid wastes consist of cellulose, hemicellulose and lignin. In this study, a single stage of acid hydrolysis process of palm oil empty fruit bunch (EFB) for production of fermentable sugar was carried out under moderate temperature (45°C) and ambient pressure. The effect of four different process variables such as solid size, HCl concentration, solid percentage and temperature were in...

متن کامل

Microcrystalline Cellulose (MCC) From Oil Palm Empty Fruit Bunch (EFB) Fiber via Simultaneous Ultrasonic and Alkali Treatment

In this study, microcrystalline cellulose (MCC) was extracted from oil palm empty fruit bunch (EFB) cellulose which was earlier isolated from oil palm EFB fibre. In order to isolate the cellulose, the chlorination method was carried out. Then, the MCC was prepared by simultaneous ultrasonic and alkali treatment from the isolated α-cellulose. Based on mass balance calculation, the yields for MCC...

متن کامل

Conversion of Oil Palm Empty Fruit Bunch to Biofuels

Crude palm oil production is reaching 48.99 million metric tonnes per year globally in 2011 and Southeast Asia is the main contributor, with Indonesia accounting for 48.79%, Malaysia 36.75%, and Thailand 2.96% (Palm Oil Refiners Association of Malaysia, 2011). Oil palm is a multi-purpose plantation and it is also an intensive producer of biomass. Accompanying the production of one kg of palm oi...

متن کامل

Isolation, characterization and application of a cellulose-degrading strain Neurospora crassa S1 from oil palm empty fruit bunch

BACKGROUND Oil palm empty fruit bunch (EFB) is a lignocellulosic waste produced in palm oil industry. EFB mainly consists of cellulose, hemicellulose (mainly xylan) and lignin and has a great potential to be reused. Converting EFB to fermentable sugars and value-added chemicals is a much better choice than treating EFB as waste. RESULTS A cellulase-producing strain growing on oil palm empty f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2017